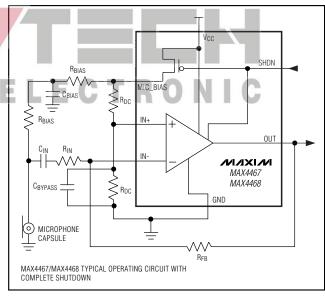
General Description

The MAX4465–MAX4469 are micropower op amps optimized for use as microphone preamplifiers. They provide the ideal combination of an optimized gain bandwidth product vs. supply current, and low voltage operation in ultra-small packages. The MAX4465/ MAX4467/MAX4469 are unity-gain stable and deliver a 200kHz gain bandwidth from only 24µA of supply current. The MAX4466/MAX4468 are decompensated for a minimum stable gain of +5V/V and provide a 600kHz gain bandwidth product. In addition, these amplifiers feature Rail-to-Rail® outputs, high AvoL, plus excellent power-supply rejection and common-mode rejection ratios for operation in noisy environments.

The MAX4467/MAX4468 include a complete shutdown mode. In shutdown, the amplifiers' supply current is reduced to 5nA and the bias current to the external microphone is cut off for ultimate power savings. The single MAX4465/MAX4466 are offered in the ultra-small 5-pin SC70 package, while the single with shutdown MAX4467/MAX4468 and dual MAX4469 are available in the space-saving 8-pin SOT23 package.

_Features

- +2.4V to +5.5V Supply Voltage Operation
- Versions with 5nA Complete Shutdown Available (MAX4467/MAX4468)


- Excellent Power-Supply Rejection Ratio: 112dB
- Excellent Common-Mode Rejection Ratio: 126dB
- High Avol: 125dB (RL = 100kΩ)
- Rail-to-Rail Outputs
- Low 24µA Quiescent Supply Current
- Gain Bandwidth Product: 200kHz (MAX4465/MAX4467/MAX4469) 600kHz Ay ≥ 5 (MAX4466/MAX4468)
- Available in Space-Saving Packages
 5-Pin SC70 (MAX4465/MAX4466)
 8-Pin SOT23 (MAX4467/MAX4468/MAX4469)

Ordering Information

_	PART	TEMP. RANGE	PIN-PACKAGE
	MAX4465EXK-T	-40°C to +85°C	5 SC70-5
	MAX4465EUK-T	-40°C to +85°C	5 SOT23-5
	MAX4466EXK-T	-40°C to +85°C	5 SC70-5
	MAX4466EUK-T	-40°C to +85°C	5 SOT23-5

Ordering Information continued at end of data sheet.

Typical Operating Circuit

___ Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

Published by WWW.SKYTECH.ir

Applications Microphone Preamplifiers Hearing Aids Cellular Phones Voice-Recognition Systems **Digital Dictation Devices** Headsets Portable Computing Pin Configurations TOP VIFW 5 IN+ Vcc MAXIM MAX4465 GND 2 MAX4466 4 OUT IN- 3

Pin Configurations continued at end of data sheet.

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

SC70/SOT23

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V _{CC} to GND)	+6V
All Other Pins to GND	0.3V to (V _{CC} + 0.3V)
Output Short-Circuit Duration	
OUT Shorted to GND or V _{CC}	Continuous
Continuous Power Dissipation (T _A = +	70°C)
5-Pin SC70 (derate 2.5mW/°C abov	e +70°C)200mW
5-Pin SOT23 (derate 7.1mW/°C abo	ve +70°C)571mW

8-Pin SOT23 (derate 5.3mW/°C above +70°	°C)421mW
8-Pin SO (derate 5.88mW/°C above +70°C))471mW
Operating Temperature Range	40°C to +85°C
Storage Temperature Range	65°C to +150°C
Junction Temperature	
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

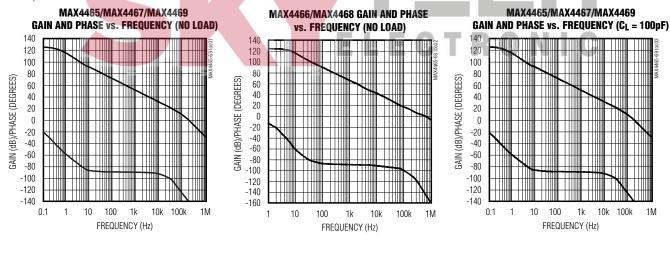
ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +5V, V_{CM} = 0, V_{OUT} = V_{CC}/2, R_L = \infty \text{ to } V_{CC}/2, \text{SHDN} = \text{GND} (MAX4467/MAX4468 only). T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values specified at } T_A = +25^{\circ}\text{C.}) (Note 1)$

PARAMETER	SYMBOL	CONDITION	IS	MIN	ТҮР	MAX	UNITS
Supply Voltage Range	Vcc	Inferred from PSRR test		2.4		5.5	V
Supply Current (Per Amplifier)	ICC	$T_A = +25^{\circ}C$ $T_A = T_{MIN}$ to T_{MAX}			24	48 60	μA
Supply Current in Shutdown	ISHDN	SHDN = V _{CC} (Note 2)			5	50	nA
Input Offset Voltage	Vos				±1	±5	mV
Input Bias Current	IB	V _{CM} = -0.1V			±2.5	±100	nA
Input Offset Current Range	los	$V_{CM} = -0.1V$			±1	±15	nA
Input Common-Mode Range	VCM	Inferred from CMRR test		-0.1		V _{CC} - 0.1	V
Common-Mode Rejection Ratio	CMRR	$-0.1V \le V_{CM} \le V_{CC} - 1V$		80	126		dB
		$2.4V \le V_{CC} \le 5.5V$		80	112		
Power-Supply Rejection Ratio	PSRR	MAX4465/MAX4467/MAX4469, f = 3.4kHz			75		dB
		MAX4466/MAX4468, f = 3.4k		80			
	0	$R_{L} = 100k\Omega \text{ to V}_{CC}/2, \\ 0.05V \le V_{OUT} \le V_{CC} - 0.05V$			125		
Open-Loop Gain	Avol	$\label{eq:RL} \begin{array}{l} R_L = 10 k\Omega \text{ to } V_{CC}/2, \\ 0.1 V \leq V_{OUT} \leq V_{CC} - 0.1 V \end{array}$		80	95		dB
Output Voltage Swing High	Vон	IVcc - VонI	$R_{L} = 100k\Omega$ $R_{L} = 10k\Omega$		10 16	50	mV
Output Voltage Swing Low	Vol	E	$R_L = 100 k\Omega$	KU	10	16	mV
output Foldage offining 2011	·UL		$R_L = 10k\Omega$		14	50	
Output Short-Circuit Current		To either supply rail			15		mA
Output Leakage Current in Shutdown		SHDN = V _{CC} , $0 \le V_{OUT} \le V_{CC}$; (Notes 2, 3)			±0.5	±100	nA
SHDN Logic Low	VIL	(Note 2)			١	/ _{CC} × 0.3	V
SHDN Logic High	VIH	(Note 2)		V _{CC} × 0.7	,		V
SHDN Input Current		(Note 2)			2	25	nA
Gain Bandwidth Product	GBWP	MAX4465/MAX4467/MAX4469 MAX4466/MAX4468			200 600		kHz

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +5V, V_{CM} = 0, V_{OUT} = V_{CC}/2, R_L = \infty$ to $V_{CC}/2$, SHDN = GND (MAX4467/MAX4468 only), T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values specified at T_A = +25°C.) (Note 1)


PARAMETER	SYMBOL	CONDI	TIONS	MIN	ТҮР	MAX	UNITS	
Channel-to-Channel Isolation		MAX4469 only, f = 1kHz	7		85		dB	
Phase Margin	ØM	$R_L = 100 k\Omega$			70		degrees	
Gain Margin		$R_L = 100 k\Omega$			20		dB	
Slew Rate	SR	Output step = 4V	MAX4465/MAX4467/ MAX4469, A _V = +1		45		mV/μs	
		MAX4466/MAX4468, Av = +5		300				
Input Noise Voltage Density	en	f = 1kHz			80		nV/√Hz	
Total Harmonic Distortion	THD	f = 1kHz, R _L = 10kΩ, V _{OUT} = 2Vp-p	MAX4465/MAX4467/ MAX4469		0.02		%	
		MAX4466/MAX4468			0.03		1	
Capacitive Load Stability	CLOAD	MAX4465/MAX4467/MAX4469, Av = +1			100		рF	
	CLOAD	MAX4466/MAX4468, A _V = +5			100			
SHDN Delay Time	t SHDN	(Note 2)			1		μs	
Enable Delay Time t _{EN} (Note 2)				50		μs		
Power-On Time toN (Note 2)				40		μs		
Bias Switch On-Resistance	Switch On-Resistance Rs Is = 5mA (Note 2)			20	500	Ω		

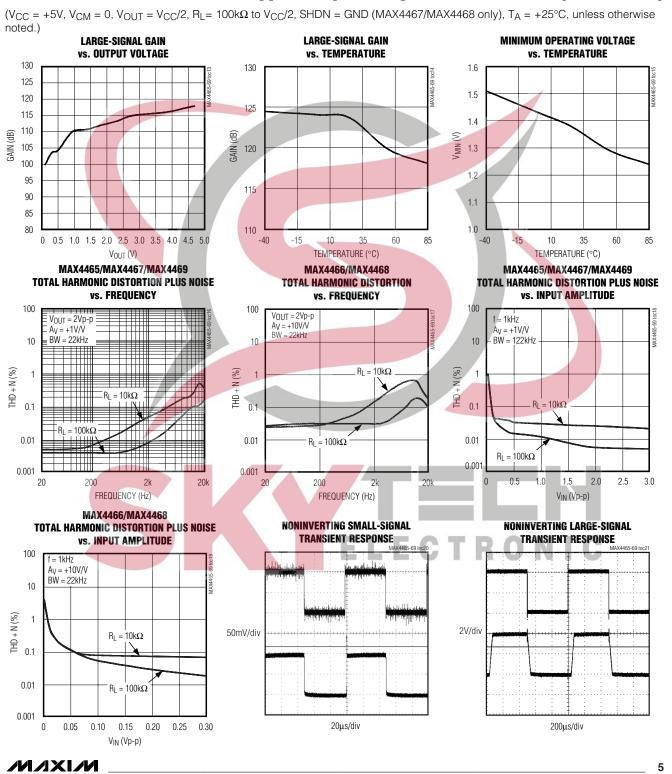
Note 1: All specifications are 100% production tested at $T_A = +25^{\circ}$ C. All temperature limits are guaranteed by design. **Note 2:** Shutdown mode is available only on the MAX4467/MAX4468.

Note 3: External feedback networks not considered.

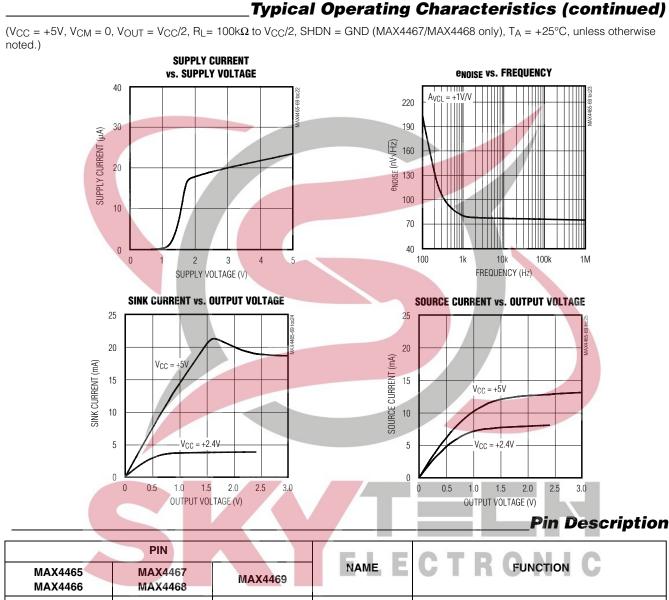
Typical Operating Characteristics

 $(V_{CC} = +5V, V_{CM} = 0, V_{OUT} = V_{CC}/2, R_L = 100k\Omega$ to $V_{CC}/2$, SHDN = GND (MAX4467/MAX4468 only), T_A = +25°C, unless otherwise noted.)

M/IXI/M


Published by WWW.SKYTECH.ir

3


Typical Operating Characteristics (continued)

 $(V_{CC} = +5V, V_{CM} = 0, V_{OUT} = V_{CC}/2, R_L = 100 k\Omega$ to $V_{CC}/2$, SHDN = GND (MAX4467/MAX4468 only), $T_A = +25^{\circ}C$, unless otherwise noted.) **POWER-SUPPLY REJECTION RATIO** SHUTDOWN SUPPLY CURRENT vs. FREQUENCY vs. TEMPERATURE SUPPLY CURRENT vs. TEMPERATURE 10,000 27 $V_{SHDN} = V_{CC}$ -10 26 (<u>Fd</u> 1000 -30 (M) SUPPLY CURRENT -50 SUPPLY CURRENT 25 (dB) PSRR (100 -70 24 -90 10 23 -110 -130 22 1 100k 10 100 10k 1M -40 -15 10 35 60 85 -40 -15 10 35 60 85 1k FREQUENCY (Hz) TEMPERATURE (°C) TEMPERATURE (°C) **OUTPUT LEAKAGE CURRENT CHANNEL-TO-CHANNEL ISOLATION INPUT OFFSET VOLTAGE** vs. FREQUENCY vs. TEMPERATURE vs. TEMPERATURE 0 600 1000 V_{SHDN} = V_{CC} (gB) $V_{OUT} = V_{CC}/2$ 400 ISOLATION -20 100 200 -40 LEAK (pA) CHANNEL-TO-CHANNEL Vos (µ 0 10 -60 -200 1 -80 -400 -100 -600 0.1 35 0.1 10 100 1000 -40 -15 10 35 60 85 -40 -15 10 60 85 TEMPERATURE (°C) FREQUENCY (kHz) TEMPERATURE (°C) **COMMON-MODE REJECTION RATIO OUTPUT VOLTAGE SWING HIGH OUTPUT VOLTAGE SWING LOW** vs. TEMPERATURE vs. TEMPERATURE vs. TEMPERATURE -100 5 5 -102 -104 4 4 -106 VDD - VOUT (MV) Vour - Vss (mV) -108 3 3 CMRR (dB) -110 -112 2 2 -114 -116 1 1 -118 -120 0 0 -40 -40 85 -15 10 35 60 85 -40 -15 10 35 60 85 -15 10 35 60 TEMPERATURE (°C) TEMPERATURE (°C) TEMPERATURE (°C) M/IXI/N 4

Typical Operating Characteristics (continued)

MAX4465-MAX4469

MAX4465 MAX4466	MAX4467 MAX4468	MAX4469		•••••
4	6 (8)	_ OUT Amplifier Output		Amplifier Output
_		1	OUTA	Amplifier Output A
_	1 (4)	_	MIC_BIAS	External Microphone Bias Network Switch Output
3	2 (3)		IN-	Inverting Amplifier Input
1	3 (2)	_	IN+	Noninverting Amplifier Input
2	4 (1)	4	GND	Ground

() denotes S0T23 package of the MAX4467/MAX4468

Pin Description (continued)

	PIN				
MAX4465 MAX4466	MAX4469		NAME	FUNCTION	
5 7 (7)		8	Vcc	Positive Supply. Bypass with a 0.1µF capacitor to GND.	
—	_	2	INA-	Inverting Amplifier Input A	
-	_	3	INA+	Noninverting Amplifier Input A	
-	_	6	INB-	Inverting Amplifier Input B	
—	—	5	INB+	Noninverting Amplifier Input B	
—	- /	7	OUTB	Amplifier Output B	
_	8 (6)	-	SHDN	Active-High Shutdown Input. Connect to GND for normal operation. Connect to V _{CC} for shutdown. Do not leave floating.	
	5 (5)	Ţ	N.C.	No Connection. Not internally connected.	

() denotes SOT23 package of the MAX4467/MAX4468.

Detailed Description

The MAX4465–MAX4469 are low-power, micropower op amps designed to be used as microphone preamplifiers. These preamplifiers are an excellent choice for noisy environments because of their high commonmode rejection and excellent power-supply rejection ratios. They operate from a single +2.4V to +5.5V supply.

The MAX4465/MAX4467/MAX4469 are unity-gain stable and deliver a 200kHz gain bandwidth from only 24 μ A of supply current. The MAX4466/MAX4468 have a minimum stable gain of +5V/V while providing a 600kHz gain bandwidth product.

The MAX4467/MAX4468 feature a complete shutdown, which is active-high, and a shutdown-controlled output providing bias to the microphone. The MAX4465/MAX4467/MAX4469 feature a slew rate suited to voice channel applications. The MAX4466/MAX4468 can be used for full-range audio, e.g., PC99 inputs.

Rail-to-Rail Output Stage

The MAX4465–MAX4469 can drive a 10k Ω load and still typically swing within 16mV of the supply rails. Figure 1 shows the output voltage swing of the MAX4465 configured with A_V = +10.

Switched Bias Supply

When used as a microphone amplifier for an electret microphone, some form of DC bias for the microphone is necessary. The MAX4467/MAX4468 have the ability to

turn off the bias to the microphone when the device is in shutdown. This can save several hundred microamps of supply current, which can be significant in low power applications. The MIC_BIAS pin provides a switched version of V_{CC} to the bias components. Figure 3 shows some typical values.

Driving Capacitive Loads

Driving a capacitive load can cause instability in many op amps, especially those with low quiescent current. The MAX4465/MAX4467/MAX4469 are unity-gain stable for a range of capacitive loads up to 100pF. Figure 4 shows the response of the MAX4465 with an excessive capacitive load.

Applications Information

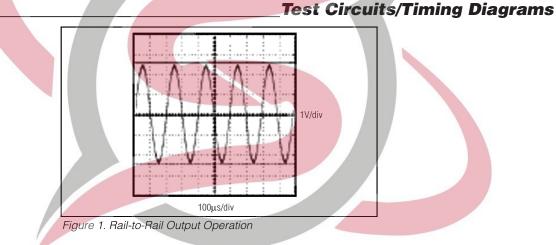
Shutdown Mode

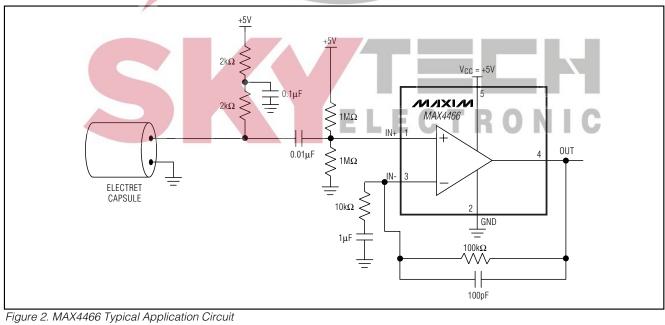
The MAX4467 and MAX4468 feature a low-power, complete shutdown mode. When SHDN goes high, the supply current drops to 5nA, the output enters a high impedance state and the bias current to the microphone is switched off. Pull SHDN low to enable the amplifier. Do not leave SHDN floating. Figure 5 shows the shutdown waveform.

Common-Mode Rejection Ratio

A microphone preamplifier ideally only amplifies the signal present on its input and converts it to a voltage appearing at the output. When used in noninverting mode, there is a small output voltage fluctuation when both inputs experience the same voltage change in the

7

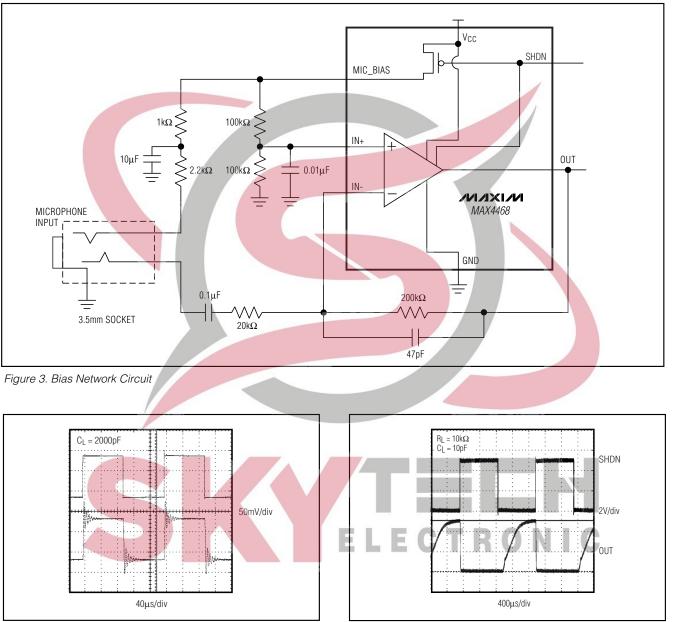

common mode. The ratio of these voltages is called the common-mode gain. The common-mode rejection ratio is the ratio of differential-mode gain to common-mode gain. The high CMRR properties of the MAX4465–MAX4469 provide outstanding performances when configured as a noninverting microphone preamplifier.


Power-Up

The MAX4465–MAX4469 outputs typically settle within 1µs after power-up. Figure 6 shows the output voltage on power-up.

Power Supplies and Layout

The MAX4465–MAX4469 operate from a single +2.4V to +5.5V power supply. Bypass the power supply with a 0.1µF capacitor to ground. Good layout techniques are necessary for the MAX4465–MAX4469 family. To decrease stray capacitance, minimize trace lengths by placing external components close to the op amp's pins. Surface-mount components are recommended. In systems where analog and digital grounds are available, the MAX4465–MAX4469 should be connected to the analog ground.



MAX4465-MAX4469

8

M/XI/M

_Test Circuits/Timing Diagrams (continued)

Figure 4. Small-Signal Transient Response with Excessive Capacitive Load

Figure 5. MAX4467/MAX4468 Shutdown Waveform

Test Diagr

Test Circuits/Timing Diagrams (continued)

V_{CC} 2V/div

OUT 1V/div

Chip Information

MAX4465/MAX4466 TRANSISTOR COUNT: 62 MAX4467/MAX4468 TRANSISTOR COUNT: 72 MAX4469 TRANSISTOR COUNT: 113 PROCESS: BICMOS

Ordering Information (continued)

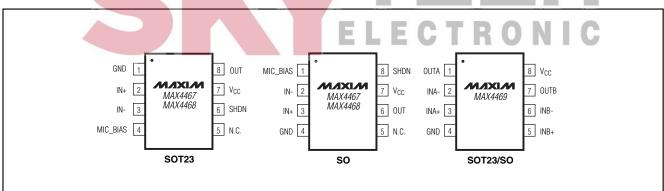
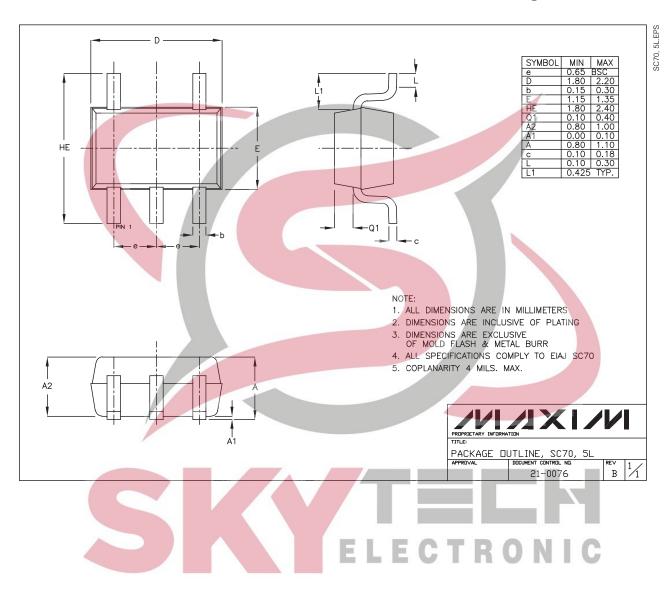
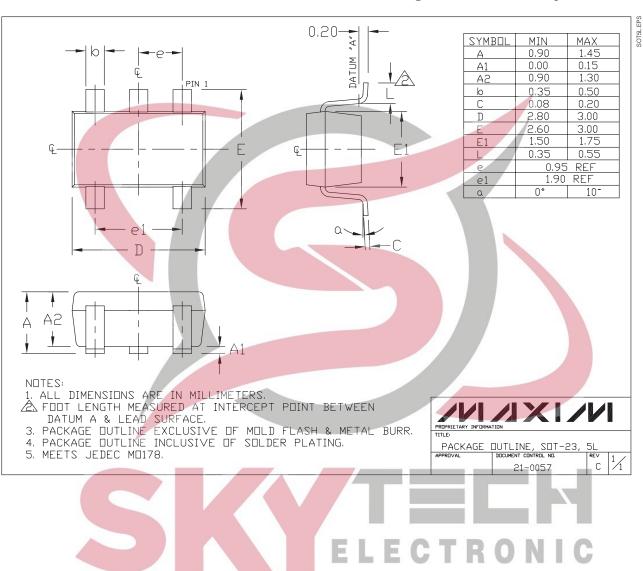

PART	TEMP, RANGE	PIN-PACKAGE
MAX4467 EKA-T	-40°C to +85°C	8 SOT23-8
MAX4467ESA	-40°C to +85°C	8 SO
MAX4468EKA-T	-40°C to +85°C	8 SOT23-8
MAX4468ESA	-40°C to +85°C	8 SO
MAX4469 EKA-T	-40°C to +85°C	8 SOT23-8
MAX4469ESA	-40°C to +85°C	8 SO

Figure 6. Power-Up/Power-Down Waveform

Selector Guide

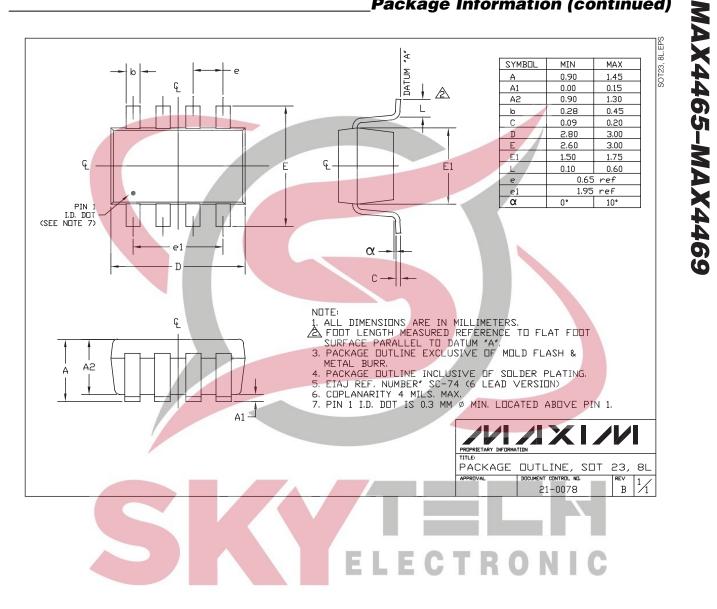

PART	MINIMUM STABLE GAIN	EXTERNAL MICROPHONE SHDN	GBWP (kHz)	PIN-PACKAGE
MAX4465	+1	No	200	5 SC70/5 SOT23
MAX4466	+5	No	600	5 SC70/5 SOT23
MAX4467	+1	Yes	200	8 SOT23/8 SO
MAX4468	+5	Yes	600	8 SOT23/8 SO
MAX4469	+1	No	200	8 SOT23/8 SO

Pin Configurations (continued)

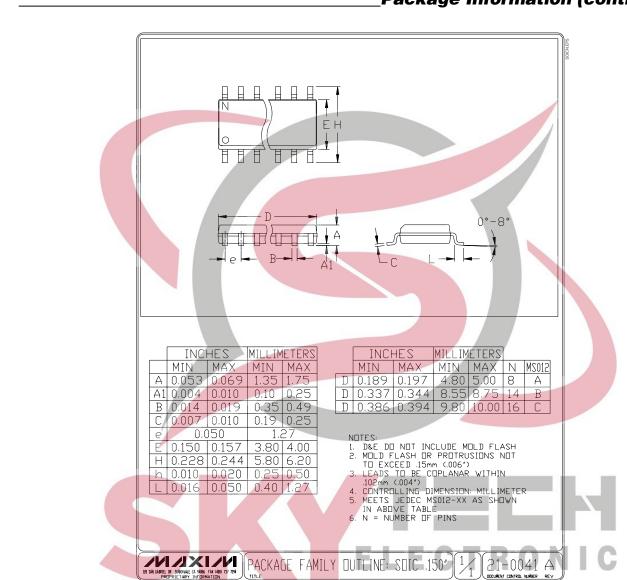


M/IXI/M

Package Information



MAX4465-MAX4469



Package Information (continued)

M/XI/M

Package Information (continued)

_Package Information (continued)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Printed USA

14

MAX4465-MAX4469

_____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2001 Maxim Integrated Products

MAXIM is a registered trademark of Maxim Integrated Products.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.

